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Abstract—The Compressed Sensing framework aims to recover a real-world phenomena give rise to such signals [7]. The wavelet
sparse signal from a small set of projections onto random veors; transform of a piecewise smooth signal yields a spassectured
the problem reduces to searching for a sparse approximatiorof this o asentation of signals in this class: the largest coefficients tend to
measurement vector. Conventional solutions involve lingaprogramming .. .
or greedy algorithms and can be computationally expensiveThese form a connected subtree of the wavelet coeff|C|e_nt tree. While other
techniques are generic, however, and assume no structure the signal methods have been proposed for fast reconstruction of waveletespa
aside from sparsity. In this paper, we design an algorithm tlat enables fast ~ signals [8, 9], these methods do not fully exploit this connectedness
recovery of piecewise smooth signals, sparse signals that have a distinct property.

“connected tree” structure in the wavelet domain. Our Tree Matching In this paper, we propose a nefree Matching Pursui{TMP)

Pursuit (TMP) algorithm significantly reduces the search spae of the . ! . - . _

traditional Matching Pursuit greedy algorithm, resulting i n a substantial ~ algorithm for fast reconstruction of piecewise smooth signals that

decrease in computational complexity for recovering piecgise smooth refines MP to exploit the connectedness of the significant wavelet

signals. An additional advantage of TMP is that it performs animplicit  coefficients. TMP features a lower computational complexity than

e e onauuclon, TP i SPPIES other generic algorihms. We study the perormance of TMP and
propose adaptations and extensions for applications such as denois-
ing. Section Il describes the necessary background in CS theory;

I. INTRODUCTION Section Ill describes the basic framework for the TMP algorithm;
The ongoing evolution and proliferation of sensing devices ha&§d Section IV describes some important adaptations to enhance the

sparked an explosion in the amount of information available @grformance. Section V suggests some extensions to the algorithm

scientists in many disciplines and to consumers in general. Tggd offers conclusions.

phenomenon has fueled new research in the fields of compression and

coding, which enable compact representations and rapid transmission Il. COMPRESSEDSENSING BACKGROUND

of the gathered information. In many cases, the data is compresseflssume that we acquire as-sample signat for which a basisy

through atransformthat yields asparserepresentation, which is then having columnsg1 12| . . . x| provides aK -sparse representation;

encoded and transmitted or stored. However, the power consumptibéat is, we can write

due to this sensing and compression process is high and currently K
limits the range of applications for many classes of sensing devices r= E Qn; Yn,
in emerging areas such as sensor networks. =t
The recently introduced framework &ompressed Sensin@S) Where {n;}; C {1,...,N} are the vector indices{a;} are the

[1,2] enables a reduction in the communication and computatidi@nsform coefficients, an’ < N. In matrix form, this is expressed
costs at the sensor. The key idea in CS is that for a signal tgz = Pa. (The theory is also easily extended to the case where
is compressible (i.e., has sparserepresentation in an orthonormalis a tight frame.)
basis or tight frame), a small number @indom projectionof that ~ The standard procedure to compress such signals is thei) to (
signal contains sufficient information fexactreconstruction. Thus, acquire the full N-point signalz; (ii) compute the complete set
the process of determining the significant sparse basis vectors hfdransform coefficientsy; (iii) locate the (few) largest, significant
be bypassed entirely at the sensor/encoder. Signal reconstructio§agfficients and discard the (many) small coefficientg) éncode
this framework consists of solving a sparse approximation problefh€ values and locationsf the largest coefficients. This procedure
find the sparsest signal that explains the acquired measuremeistdnherently inefficient, in that the encoder must compate N
Techniques originally proposed for finding sparse approximatiofi@nsform coefficientgc }, even though it will discard most of them.
from redundant dictionaries (such as Basis Pursuit (BP) [3], Magchin This raises a simple question: For a given signal, is it possible to
Pursuit (MP) [4], and Orthogonal Matching Pursuit (OMP) [5]) havdirectly estimate the set of large’s that will not be discarded? While
also been adopted for the CS framework [1, 2, 6]. BP employs lindkis seems impossible, recent work in CS [1, 2] has shown that about
programming and offers good performance but suffers from high random projections contain enough information to reconstruct
computational complexity. MP provides a low-complexity alternativéParse signals. In the CS theory we do not measure the targe
to BP but requires an unbounded number of iterations for convélirectly. Rather, we measure the projectigns= (z, o;) of the signal
gence. OMP converges in a fixed number of iterations but requitegto asecond sebf M vectorsX = [o7 |07 |...|o%;]" which
the added complexity of the dictionary orthogonalization at each steye call themeasurement vector§he CS theory tells us that when
These algorithms for reconstruction are generic, in the sense ta&ttain conditions hold, namely that tNebasis set does not provide
they do not exploit any structure (aside from sparsity) that magparse representations of the elementgogf (a condition known as
exist in the sensed signals. An important subclass of sparse signiigpherenceof the two bases), then it is indeed possible to recover
however, is the class giecewise smootsignals — many punctuated the set of largev;’s from a similarly sized set of measuremefis }.
This incoherence property holds for many pairs of bases, including
Leadership University Program for t_axample, delta spikes an_d the _sine waves of the Eourier basis,
The authors are with the Dep.artment of Electrical and Compingineer- _Or siné Wave? and Wa_lvelets; "_1 particular a_ randqm b§SIS tends to be
ing at Rice University. incoherent with any fixed basis. The algorithms in this paper apply
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matrices. The CS theory also applies to redundant representationthe wavelet domain. Without loss of generality, we focus on 1D
such as curvelets [10], which are well-suited to match geometricagnals, though similar arguments apply for 2D images in the wavelet
edge structures in 2D images. or curvelet [10] domains. In a typical 1D wavelet transform, each
Recovery of the set of significant (large) coefficierts;} is coefficient at scalg € {1,...,log,(NN)} describes a portion of the
achieved using algorithms for sparse approximation. Given measusignal of sizeO(277). With 27! such coefficients at each scale, a
mentsy € R, we solve for the sparsest approximationsofin  binary tree provides a natural organization for the coefficients. Each
the dictionary defined by the columns &f = XU = [¢1]...|¢n]. coefficient at scalg < log,(N) has2 children at scalej + 1, and
(Equivalently, we seek the sparsesthat explains the measurementsach coefficient at scale> 1 has oneparentat scalej — 1. Notions
y.) Because of the incoherence between the origidgl énd the of descendants and ancestors are propagated naturally at higher and
measurement) bases, if the original signat is sparse in the lower scales, respectively.
original basis¥, then no other set of sparse coefficients can exist Due to the analysis properties of wavelets, coefficient values tend to
to explain the measurements There is no free lunch, however; perpetuate through scale. A large wavelet coefficient (in magnitude)
according to the theory, the observation set must have &ize= generally indicates the presence of a singularity inside its support;
ly] > CK, whereC is dependent on the matrik. Commonly quoted a small wavelet coefficient generally indicates a smooth region.
asC = O(log(N)) [2], we have found thaC ~ log,(1 + N/K) Thanks to the nesting of child wavelets inside their parents, edges in
provides a useful rule-of-thumb, and 86 may still be much smaller general manifest themselves in the wavelet domain as chains of large
than N. coefficients propagating across scales in the wavelet tree. Wavelet
Techniques originally proposed for finding sparse approximatiogsefficients also have decaying magnitudes as the scale decreases [7]
from redundant dictionaries have been adopted for CS [1, 2, 6]. BRis causes the significant wavelet coefficients of piecewise smooth
minimizes ||«||; with the constrainty = ®« that the coefficients signals to form a connected subtree within the wavelet binary tree.
must explain the signal. Finding thisinvolves solving a large linear  Not surprisingly, we observe for piecewise smooth signals that MP
program, however, which require®(N? log(V)) operations. MP is tends to select wavelet coefficients located near the top of the tree
a computationally simple iterative greedy algorithm: at each iteratiofirst and then continues selecting down the tree, effectively building
it selects the atom that explains most of the energy in the signal. MRconnected tree that contains the most significant coefficients from

runs as follows: the top down. This suggests that it may not be necessary for the MP
1) Initialize the residualy = y and the approximatiom = 0, algorithm to checlall possible coefficients at each stage. Rather, the
a € RY. Sett = 1. next most important coefficient at each stage is likely to be among
2) Select the dictionary vector that maximizes the projection &fe children of the currently selected coefficients.
the residual We must refine this heuristic, however, to obtain an effective
algorithm. In particular, for real world piecewise smooth signals,
e = A ANy [{re—1, @) /ll¢:]l- the nonzero coefficients generally do not form a perfect connected

. - subtree. The reasons for this are twofold. First, since wavelets
3) Update the estimate of the coefficient for the selected vector . . . ..
and the residual are bfindpass fur!ctlons,. .Wavelet coefficients OSCI||ate. pogltlve and
negative around singularities [11]. Second, due to the linearity of the
e o= i1 — (Te—1, by )Pny [ bne s wavelet transform, two or more singularities in the signal may cause
Ony, = Qny + (Pee1, bn,) /|| m |12 destructive interference among large Wavel_eF coefficients. Ei_ther of
) . these factors may cause the wavelet coefficient corresponding to a
4) It [¢ll2 > €llyl|2, then increment and go to Step 2; otherwise, giscontinuity to be small yet have large children, yielding a non-
terminate. connected set of meaningful wavelet coefficients. We can still define a
The convergence criterion is the minimum proporticof energy that connected subtree that contains all of the nonzero valued coefficients,
can be left in the residual. MP has been proven to achieve an accuk@ever, which will contain somgaps consisting of sequences of
decomposition of the signal as a linear combination of dictionagmall or zero values. Our proposed algorithm features a parameter
vectors, although the required number of iterations is unbounded [dbsigned to address this complication.
Thus, the complexity of MP is approximatetp(CKNI), where
I corresponds to the unknown number of iterations. OMP limi. Algorithms

the number of MP iterations by orthogonalizing the non-selectedtree Matching Pursuit (TMP) considers only a subset of the basis
dictionary vectors against those already selected. This allows Wigtors at each iteration, and then expands that set as significant co-
algorithm to converge in at mogt iterations, but requires the addedefficients are found. Define two sets of coefficiefitsand C;, which
computational cost of the orthogonalization at each iteration; the totgJntain the set ogelectedvectors (those vectors that correspond to

o 2
complexity ISO(CK™N). _ nonzero coefficients in the estimaf§ and thecandidatevectors
Though effective for generic CS reconstruction, BP, MP, and OMEectors with zero coefficients i but whose projections will be

do not exploit any structure (aside from sparsity) that may be preseRh|yated at the next iteration). These sets are initialized as
in the sensed signal. This can lead both to inefficiencies in the

recovery algorithm and to artifacts in the reconstructed signals [9]. Sy =10, Cp={1}UDy(1), )

By considering the additional wavelet-domain structure of piecewiggere theb-depth set of descendani () is the set of coefficients

smooth signals, we hope both to improve the efficiency of theg@inin » levels below coefficieni in the wavelet tree.

algorithms and to benefit from the regularization implicit in the At each iteration, we search for the dictionary veetoiin S; UC,

reconstruction. that yields the maximum inner product with the current residual; if

the selected vector comes fro@, then that coefficient (and its

ancestors, denoted(7)) is moved to the set of selected coefficients

A. Multiscale Wavelet Structure S, and removed fronC;, and the descendant sét (i) is added
We aim to customize existing reconstruction algorithms for piecés C;. For b-Tree Matching Pursui-TMP) andb-Tree Orthogonal

wise smooth signals, which have sparse, structured representatigiagching Pursuit(b-TOMP) we adapt Step 2 of MP/OMP as follows:

I1l. TREEMATCHING PURSUIT



TABLE |
Computational complexity of CS algorithmys. = signal length;K = signal sparsity (typicallg. N); I = convergence facto€; = oversampling
factor; B = TMP band width.

Algorithm BP MP OMP b-TMP b-TOMP
Complexity | O(N3log(N)) O(CKNI) O(CK2N) O(2P°CK?I) O(2°CK?3)

2) Among the candidates, select the dictionary vector that maxire real (or imaginary) wavelet coefficient is small, the imaginary (or

mizes the projection of the residual real) wavelet coefficient is large [11]. Thus, the shift-sensitivity of the
_ I S /el standard real-wavelet transform is alleviated. As such, wherb-the
=AM, W Pi il TMP algorithm is implemented using tf@&NT, a much smaller band

will be necessary for efficient reconstruction. Figure 1 (bottom right)
shows the approximate recovery of Blocks using a band of width
S: = Si—1UnsUA(ne), Unfortunately, complex coefficients can still interfere destructively,
Ci = Ci1\ (neUA(n)) U Dy(ny). suggesting slightly greater tharl as a conservative choice.

If ny € C;—1, then update the sets

While the existence of gaps in the wavelet subtree containing the
set of meaningful coefficients will hamper the ability to reach sonmfe: Random Lookahead
nonzero coefficients, the parameteenables us to define a “looka- We propose a second modification to TMP that can be applied
head” band of candidate coefficients wide enough that each possiisleboth the real andCWT variants. The modification involves a
gap is contained in the band. This modification has advantages amdbabilistic definition of the candidate s@} at each iteration, based
disadvantages; it is clear from the results that the reconstruction wif the Hidden Markov Tree wavelet model [12]. In this model, two
be the same or better as we add more descendant®intdowever, states exist for each coefficient @nd S for large and small), and
the computational complexities dFTMP and b-TOMP, given by the probabilities of transition between states for pairs of parent and
O(2°CK?I) andO(2°CK?), respectively, will increase with. For ~child coefficients fss, 7sz, mrs, andw..) are defined such that
moderateb both still represent a significant improvement over theiconnected strings of-state coefficients are likely. In our matching
generic counterparts, aldTOMP improves upon BP by a factor of pursuit algorithm, we label the coefficients selected at each iteration
O((N/K)?); Table 1 summarizes the computational complexity ofs large {), i.e., P(n = L) = 1, and calculate the conditional
the various algorithms. probability that each of its descendants is in fhatate. During the
TMP is robust to noise (see Section V-A) and computationaligandidate set selection, for each léah the subtree containing the
attractive compared to the generic algorithms. Figure 1 (top rightt of selected coefficients, we select a random sample of destendan
shows that forb = 2 TMP fails due to a small coefficient inside Duwmr () according to the probability that each descendant is in the
the subtree containing the meaningful coefficients. However, whiarge state, where for a coefficienthat isd levels below coefficient
b = 3 (bottom left), the band is wide enough to bypass this gap P(j = L) = (wss)®. Thus, coefficients with higher estimates of
and reconstruct the signal satisfactorily with approximately half a3(j = L) are more likely to be selected in the candidate set.
many inner products as required for MP (top middle). THEOMP We amend this formulation slightly for easier computation by

algorithm performs comparably. choosing a constant and then constructin@uwr () by randomly
selecting s descendant coefficients from each scale befovwe
IV. ADAPTATIONS OF TREE MATCHING PURSUIT denote by Markov Tree Matching Pursuit (MTMP) the TMP algo-

In the previous section we proposedi-devel lookahead band to rithm that uses this descendant set in the updates. It is worth noting
: __ ob
compensate for possible gaps among the significant wavelet codffdt Py settings = 27, the descendants selected by th&ITMP

cients. In this section we propose alternative techniques to allevi@{gorithm contain the set of descendants selected by the original
the problems caused by gaps. TMP algorithm. The algorithm should enable recovery of signals

having large gaps inside the set of meaningful coefficients, while
keeping the number of coefficients in the candidate sets relatively
small. In Figure 1 (bottom middle), we see that by using the random

By using acomplex wavelet transfor¢CWT) [11], we can avoid |gokahead withs = 4, the significant coefficients below the gap are
some of the pitfalls of the standard real wavelet transform.QWET  recovered.

shares the same binary tree structure as the real wavelet transform,
but the wavelet functions are complex-valued

A. Complex Wavelet Transform

V. EXTENSIONS AND CONCLUSIONS
Ye(t) = ¥r(t) + jei(t). A. Regularization and Denoising

The component,(t) is real and even, whilgiy;(t) is imaginary and Most current implementations of reconstruction in CS are not
odd; they form an approximate Hilbert transform pair. TH&VT robust to the injection of noise in the measurements; the noise is either
transform can be easily implemented using a dual-tree structuagecounted for in the distortion estimation [13] or in the reconstruction
where we simply compute tweeal wavelet transforms«,.(¢t) and constraints [8]. When the signal is sparse in the wavelet basis, we
1;(t)) in parallel, obtaining the sequences of coefficiamtsand«a;. can effectively perform denoising by thresholding [14] by varying
The complex wavelet coefficients are then definedas- o +ja;. the convergence criterionas a function of the signal-to-noise ratio.

Note that either the real or the imaginary part of the wavel&e then identify only the most significant coefficients using the MP
coefficients would suffice to reconstruct the signal; however, the dual b>-TMP algorithm and effectively threshold their values at the
representation establishes a strong coherency among the compémonstruction. An alternative EM-based algorithm for recovery from
magnitudes. Due to the Hilbert transform relationship between theisy measurements was described in [15] along with bounds for the
real and imaginary wavelets, when a discontinuity is present adtortion in the recovered signal.
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Fig. 1. CSreconstructions using several different algorithms. Axisliimdicate reconstruction quality and computational corityleTop left: original
signal. Top middle: MP. Top right-TMP withb = 2; the band is too small to cover the gaps in the wavelet coeffemd reconstruction fails. Bottom
left: b-TMP with b = 3; the band is large enough to bypass the gap, leading to ceewatstruction. Bottom middle-MTMP, s = 4. Bottom right:
b-TMP with theCWT, b = 1. Both of these modifications yield approximate reconstruction.

CS reconstructions using the standard methods (BP and MP) adsothe Discrete Cosine Transform.
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