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Fast Reconstruction of Piecewise Smooth Signals
from Incoherent Projections

Marco F. Duarte, Michael B. Wakin, and Richard G. Baraniuk

Abstract— The Compressed Sensing framework aims to recover a
sparse signal from a small set of projections onto random vectors;
the problem reduces to searching for a sparse approximationof this
measurement vector. Conventional solutions involve linear programming
or greedy algorithms and can be computationally expensive.These
techniques are generic, however, and assume no structure inthe signal
aside from sparsity. In this paper, we design an algorithm that enables fast
recovery of piecewise smooth signals, sparse signals that have a distinct
“connected tree” structure in the wavelet domain. Our Tree Matching
Pursuit (TMP) algorithm significantly reduces the search space of the
traditional Matching Pursuit greedy algorithm, resulting i n a substantial
decrease in computational complexity for recovering piecewise smooth
signals. An additional advantage of TMP is that it performs animplicit
regularization to combat noise in the reconstruction. TMP also applies
to the more general case of “incoherent” measurement vectors.

I. I NTRODUCTION

The ongoing evolution and proliferation of sensing devices has
sparked an explosion in the amount of information available to
scientists in many disciplines and to consumers in general. This
phenomenon has fueled new research in the fields of compression and
coding, which enable compact representations and rapid transmission
of the gathered information. In many cases, the data is compressed
through atransformthat yields asparserepresentation, which is then
encoded and transmitted or stored. However, the power consumption
due to this sensing and compression process is high and currently
limits the range of applications for many classes of sensing devices
in emerging areas such as sensor networks.

The recently introduced framework ofCompressed Sensing(CS)
[1, 2] enables a reduction in the communication and computation
costs at the sensor. The key idea in CS is that for a signal that
is compressible (i.e., has asparserepresentation in an orthonormal
basis or tight frame), a small number ofrandom projectionsof that
signal contains sufficient information forexactreconstruction. Thus,
the process of determining the significant sparse basis vectors can
be bypassed entirely at the sensor/encoder. Signal reconstruction in
this framework consists of solving a sparse approximation problem:
find the sparsest signal that explains the acquired measurements.
Techniques originally proposed for finding sparse approximations
from redundant dictionaries (such as Basis Pursuit (BP) [3], Matching
Pursuit (MP) [4], and Orthogonal Matching Pursuit (OMP) [5]) have
also been adopted for the CS framework [1, 2, 6]. BP employs linear
programming and offers good performance but suffers from high
computational complexity. MP provides a low-complexity alternative
to BP but requires an unbounded number of iterations for conver-
gence. OMP converges in a fixed number of iterations but requires
the added complexity of the dictionary orthogonalization at each step.

These algorithms for reconstruction are generic, in the sense that
they do not exploit any structure (aside from sparsity) that may
exist in the sensed signals. An important subclass of sparse signals,
however, is the class ofpiecewise smoothsignals — many punctuated
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real-world phenomena give rise to such signals [7]. The wavelet
transform of a piecewise smooth signal yields a sparse,structured
representation of signals in this class: the largest coefficients tend to
form a connected subtree of the wavelet coefficient tree. While other
methods have been proposed for fast reconstruction of wavelet-sparse
signals [8, 9], these methods do not fully exploit this connectedness
property.

In this paper, we propose a newTree Matching Pursuit(TMP)
algorithm for fast reconstruction of piecewise smooth signals that
refines MP to exploit the connectedness of the significant wavelet
coefficients. TMP features a lower computational complexity than
other generic algorithms. We study the performance of TMP and
propose adaptations and extensions for applications such as denois-
ing. Section II describes the necessary background in CS theory;
Section III describes the basic framework for the TMP algorithm;
and Section IV describes some important adaptations to enhance the
performance. Section V suggests some extensions to the algorithm
and offers conclusions.

II. COMPRESSEDSENSING BACKGROUND

Assume that we acquire anN -sample signalx for which a basisΨ
having columns[ψ1|ψ2| . . . |ψN ] provides aK-sparse representation;
that is, we can write

x =
K∑

i=1

αni
ψni

,

where {ni}i ⊂ {1, . . . , N} are the vector indices,{αi} are the
transform coefficients, andK ¿ N . In matrix form, this is expressed
asx = Ψα. (The theory is also easily extended to the case whereΨ
is a tight frame.)

The standard procedure to compress such signals is then to (i)
acquire the fullN -point signal x; (ii ) compute the complete set
of transform coefficientsα; (iii ) locate the (few) largest, significant
coefficients and discard the (many) small coefficients; (iv) encode
the values and locationsof the largest coefficients. This procedure
is inherently inefficient, in that the encoder must computeall N
transform coefficients{αi}, even though it will discard most of them.

This raises a simple question: For a given signal, is it possible to
directly estimate the set of largeαi’s that will not be discarded? While
this seems impossible, recent work in CS [1, 2] has shown that about
K random projections contain enough information to reconstruct
sparse signals. In the CS theory we do not measure the largeαi’s
directly. Rather, we measure the projectionsyi = 〈x, σi〉 of the signal
onto a second setof M vectors Σ =

[
σT

1 |σ
T
2 | . . . |σ

T
M

]T
which

we call themeasurement vectors. The CS theory tells us that when
certain conditions hold, namely that theΨ basis set does not provide
sparse representations of the elements of{σi} (a condition known as
incoherenceof the two bases), then it is indeed possible to recover
the set of largeαi’s from a similarly sized set of measurements{yi}.
This incoherence property holds for many pairs of bases, including
for example, delta spikes and the sine waves of the Fourier basis,
or sine waves and wavelets; in particular a random basis tends to be
incoherent with any fixed basis. The algorithms in this paper apply
not only to random but also to more general incoherent measurement



matrices. The CS theory also applies to redundant representations
such as curvelets [10], which are well-suited to match geometrical
edge structures in 2D images.

Recovery of the set of significant (large) coefficients{αi} is
achieved using algorithms for sparse approximation. Given measure-
mentsy ∈ R

M , we solve for the sparsest approximation ofy in
the dictionary defined by the columns ofΦ = ΣΨ = [φ1| . . . |φN ].
(Equivalently, we seek the sparsestα that explains the measurements
y.) Because of the incoherence between the original (Ψ) and the
measurement (Σ) bases, if the original signalx is sparse in the
original basisΨ, then no other set of sparse coefficients can exist
to explain the measurementsy. There is no free lunch, however;
according to the theory, the observation set must have sizeM =
|y| ≥ CK, whereC is dependent on the matrixΦ. Commonly quoted
as C = O(log(N)) [2], we have found thatC ≈ log

2
(1 + N/K)

provides a useful rule-of-thumb, and soM may still be much smaller
thanN .

Techniques originally proposed for finding sparse approximations
from redundant dictionaries have been adopted for CS [1, 2, 6]. BP
minimizes ‖α‖1 with the constrainty = Φα that the coefficients
must explain the signal. Finding thisα involves solving a large linear
program, however, which requiresO(N3 log(N)) operations. MP is
a computationally simple iterative greedy algorithm: at each iteration,
it selects the atom that explains most of the energy in the signal. MP
runs as follows:

1) Initialize the residualr0 = y and the approximation̂α = 0,
α̂ ∈ R

N . Sett = 1.
2) Select the dictionary vector that maximizes the projection of

the residual

nt = arg max
i∈{1,...,N}

|〈rt−1, φi〉| /‖φi‖.

3) Update the estimate of the coefficient for the selected vector
and the residual

rt = rt−1 − 〈rt−1, φnt
〉φnt

/‖φnt
‖2,

α̂nt
= α̂nt

+ 〈rt−1, φnt
〉/‖φnt

‖2.

4) If ‖rt‖2 > ε‖y‖2, then incrementt and go to Step 2; otherwise,
terminate.

The convergence criterion is the minimum proportionε of energy that
can be left in the residual. MP has been proven to achieve an accurate
decomposition of the signal as a linear combination of dictionary
vectors, although the required number of iterations is unbounded [7].
Thus, the complexity of MP is approximatelyO(CKNI), where
I corresponds to the unknown number of iterations. OMP limits
the number of MP iterations by orthogonalizing the non-selected
dictionary vectors against those already selected. This allows the
algorithm to converge in at mostM iterations, but requires the added
computational cost of the orthogonalization at each iteration; the total
complexity isO(CK2N).

Though effective for generic CS reconstruction, BP, MP, and OMP
do not exploit any structure (aside from sparsity) that may be present
in the sensed signal. This can lead both to inefficiencies in the
recovery algorithm and to artifacts in the reconstructed signals [9].
By considering the additional wavelet-domain structure of piecewise
smooth signals, we hope both to improve the efficiency of these
algorithms and to benefit from the regularization implicit in the
reconstruction.

III. T REE MATCHING PURSUIT

A. Multiscale Wavelet Structure

We aim to customize existing reconstruction algorithms for piece-
wise smooth signals, which have sparse, structured representations

in the wavelet domain. Without loss of generality, we focus on 1D
signals, though similar arguments apply for 2D images in the wavelet
or curvelet [10] domains. In a typical 1D wavelet transform, each
coefficient at scalej ∈ {1, . . . , log

2
(N)} describes a portion of the

signal of sizeO(2−j). With 2j−1 such coefficients at each scale, a
binary tree provides a natural organization for the coefficients. Each
coefficient at scalej < log

2
(N) has2 children at scalej + 1, and

each coefficient at scalej > 1 has oneparentat scalej−1. Notions
of descendants and ancestors are propagated naturally at higher and
lower scales, respectively.

Due to the analysis properties of wavelets, coefficient values tend to
perpetuate through scale. A large wavelet coefficient (in magnitude)
generally indicates the presence of a singularity inside its support;
a small wavelet coefficient generally indicates a smooth region.
Thanks to the nesting of child wavelets inside their parents, edges in
general manifest themselves in the wavelet domain as chains of large
coefficients propagating across scales in the wavelet tree. Wavelet
coefficients also have decaying magnitudes as the scale decreases [7].
This causes the significant wavelet coefficients of piecewise smooth
signals to form a connected subtree within the wavelet binary tree.

Not surprisingly, we observe for piecewise smooth signals that MP
tends to select wavelet coefficients located near the top of the tree
first and then continues selecting down the tree, effectively building
a connected tree that contains the most significant coefficients from
the top down. This suggests that it may not be necessary for the MP
algorithm to checkall possible coefficients at each stage. Rather, the
next most important coefficient at each stage is likely to be among
the children of the currently selected coefficients.

We must refine this heuristic, however, to obtain an effective
algorithm. In particular, for real world piecewise smooth signals,
the nonzero coefficients generally do not form a perfect connected
subtree. The reasons for this are twofold. First, since wavelets
are bandpass functions, wavelet coefficients oscillate positive and
negative around singularities [11]. Second, due to the linearity of the
wavelet transform, two or more singularities in the signal may cause
destructive interference among large wavelet coefficients. Either of
these factors may cause the wavelet coefficient corresponding to a
discontinuity to be small yet have large children, yielding a non-
connected set of meaningful wavelet coefficients. We can still define a
connected subtree that contains all of the nonzero valued coefficients,
however, which will contain somegapsconsisting of sequences of
small or zero values. Our proposed algorithm features a parameter
designed to address this complication.

B. Algorithms

Tree Matching Pursuit (TMP) considers only a subset of the basis
vectors at each iteration, and then expands that set as significant co-
efficients are found. Define two sets of coefficientsSt andCt, which
contain the set ofselectedvectors (those vectors that correspond to
nonzero coefficients in the estimatêα) and thecandidatevectors
(vectors with zero coefficients in̂α but whose projections will be
evaluated at the next iteration). These sets are initialized as

St = ∅, Ct = {1} ∪ Db(1), (1)

where theb-depth set of descendantsDb(i) is the set of coefficients
within b levels below coefficienti in the wavelet tree.

At each iteration, we search for the dictionary vectorφi in St∪Ct

that yields the maximum inner product with the current residual; if
the selected vector comes fromCt, then that coefficienti (and its
ancestors, denotedA(i)) is moved to the set of selected coefficients
St and removed fromCt, and the descendant setDb(i) is added
to Ct. For b-Tree Matching Pursuit(b-TMP) andb-Tree Orthogonal
Matching Pursuit(b-TOMP) we adapt Step 2 of MP/OMP as follows:
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TABLE I
Computational complexity of CS algorithms.N = signal length;K = signal sparsity (typically¿ N ); I = convergence factor,C = oversampling

factor;B = TMP band width.

Algorithm BP MP OMP b-TMP b-TOMP
Complexity O(N3 log(N)) O(CKNI) O(CK2N) O(2bCK2I) O(2bCK3)

2) Among the candidates, select the dictionary vector that maxi-
mizes the projection of the residual

nt = arg max
i∈St−1∪Ct−1

|〈rt−1, φi〉| /‖φi‖.

If nt ∈ Ct−1, then update the sets

St = St−1 ∪ nt ∪ A(nt),

Ct = Ct−1 \ (nt ∪ A(nt)) ∪ Db(nt).

While the existence of gaps in the wavelet subtree containing the
set of meaningful coefficients will hamper the ability to reach some
nonzero coefficients, the parameterb enables us to define a “looka-
head” band of candidate coefficients wide enough that each possible
gap is contained in the band. This modification has advantages and
disadvantages; it is clear from the results that the reconstruction will
be the same or better as we add more descendants intoDi. However,
the computational complexities ofb-TMP and b-TOMP, given by
O(2bCK2I) andO(2bCK3), respectively, will increase withb. For
moderateb both still represent a significant improvement over their
generic counterparts, andb-TOMP improves upon BP by a factor of
O((N/K)3); Table 1 summarizes the computational complexity of
the various algorithms.

TMP is robust to noise (see Section V-A) and computationally
attractive compared to the generic algorithms. Figure 1 (top right)
shows that forb = 2 TMP fails due to a small coefficient inside
the subtree containing the meaningful coefficients. However, when
b = 3 (bottom left), the band is wide enough to bypass this gap
and reconstruct the signal satisfactorily with approximately half as
many inner products as required for MP (top middle). Theb-TOMP
algorithm performs comparably.

IV. A DAPTATIONS OFTREE MATCHING PURSUIT

In the previous section we proposed ab-level lookahead band to
compensate for possible gaps among the significant wavelet coeffi-
cients. In this section we propose alternative techniques to alleviate
the problems caused by gaps.

A. Complex Wavelet Transform

By using acomplex wavelet transform(CWT) [11], we can avoid
some of the pitfalls of the standard real wavelet transform. TheCWT
shares the same binary tree structure as the real wavelet transform,
but the wavelet functions are complex-valued

ψc(t) = ψr(t) + jψi(t).

The componentψr(t) is real and even, whilejψi(t) is imaginary and
odd; they form an approximate Hilbert transform pair. TheCWT
transform can be easily implemented using a dual-tree structure,
where we simply compute tworeal wavelet transforms (ψr(t) and
ψi(t)) in parallel, obtaining the sequences of coefficientsαr andαi.
The complex wavelet coefficients are then defined asαc = αr +jαi.

Note that either the real or the imaginary part of the wavelet
coefficients would suffice to reconstruct the signal; however, the dual
representation establishes a strong coherency among the complex
magnitudes. Due to the Hilbert transform relationship between the
real and imaginary wavelets, when a discontinuity is present and

the real (or imaginary) wavelet coefficient is small, the imaginary (or
real) wavelet coefficient is large [11]. Thus, the shift-sensitivity of the
standard real-wavelet transform is alleviated. As such, when theb-
TMP algorithm is implemented using theCWT, a much smaller band
will be necessary for efficient reconstruction. Figure 1 (bottom right)
shows the approximate recovery of Blocks using a band of width1.
Unfortunately, complex coefficients can still interfere destructively,
suggestingb slightly greater than1 as a conservative choice.

B. Random Lookahead

We propose a second modification to TMP that can be applied
to both the real andCWT variants. The modification involves a
probabilistic definition of the candidate setCt at each iteration, based
on the Hidden Markov Tree wavelet model [12]. In this model, two
states exist for each coefficient (L and S for large and small), and
the probabilities of transition between states for pairs of parent and
child coefficients (πSS , πSL, πLS , and πLL) are defined such that
connected strings ofL-state coefficients are likely. In our matching
pursuit algorithm, we label the coefficients selected at each iteration
as large (L), i.e., P (nt = L) = 1 , and calculate the conditional
probability that each of its descendants is in theL state. During the
candidate set selection, for each leafi in the subtree containing the
set of selected coefficients, we select a random sample of descendants
DHMT(i) according to the probability that each descendant is in the
large state, where for a coefficientj that isd levels below coefficient
i, P (j = L) = (πSS)d. Thus, coefficients with higher estimates of
P (j = L) are more likely to be selected in the candidate set.

We amend this formulation slightly for easier computation by
choosing a constants and then constructingDHMT(i) by randomly
selecting s descendant coefficients from each scale belowi. We
denote by Markov Tree Matching Pursuit (MTMP) the TMP algo-
rithm that uses this descendant set in the updates. It is worth noting
that by settings = 2b, the descendants selected by thes-MTMP
algorithm contain the set of descendants selected by the originalb-
TMP algorithm. The algorithm should enable recovery of signals
having large gaps inside the set of meaningful coefficients, while
keeping the number of coefficients in the candidate sets relatively
small. In Figure 1 (bottom middle), we see that by using the random
lookahead withs = 4, the significant coefficients below the gap are
recovered.

V. EXTENSIONS AND CONCLUSIONS

A. Regularization and Denoising

Most current implementations of reconstruction in CS are not
robust to the injection of noise in the measurements; the noise is either
accounted for in the distortion estimation [13] or in the reconstruction
constraints [8]. When the signal is sparse in the wavelet basis, we
can effectively perform denoising by thresholding [14] by varying
the convergence criterionε as a function of the signal-to-noise ratio.
We then identify only the most significant coefficients using the MP
or b-TMP algorithm and effectively threshold their values at the
reconstruction. An alternative EM-based algorithm for recovery from
noisy measurements was described in [15] along with bounds for the
distortion in the recovered signal.
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Fig. 1. CS reconstructions using several different algorithms. Axis labels indicate reconstruction quality and computational complexity. Top left: original
signal. Top middle: MP. Top right:b-TMP with b = 2; the band is too small to cover the gaps in the wavelet coefficients and reconstruction fails. Bottom
left: b-TMP with b = 3; the band is large enough to bypass the gap, leading to correctreconstruction. Bottom middle:s-MTMP, s = 4. Bottom right:
b-TMP with theCWT, b = 1. Both of these modifications yield approximate reconstruction.

CS reconstructions using the standard methods (BP and MP) also
typically suffer from artifacts since the energy of the signal is not
discriminated by band [9]; in this case, a small amount of the energy
from the coefficients in the coarsest scales “leaks” to the finer scales
and causes low-amplitude, high-frequency artifacts that resemble
small-scale noise. By giving preference to the coarsest coefficients
over the finest, the TMP algorithms help mitigate this effect during
reconstruction.

B. Matching Pursuit using Transforms

Although MP enables computationally feasible reconstruction for
higher-dimensional signals than BP, we still pay the price of storage
of the matrixΦ = ΣΨ, which is of sizeM × N = O(KN log N).
For high-dimensional signals a large amount of memory is needed
to perform MP using this matrix. We do have an alternative: if we
can replace the projection of a vector using the matrix product with
a transform, then we do not need to store these matrices in memory.
Many useful transforms have computational complexity lower than
multiplication by the corresponding matrix operator. However, since
all coefficients are calculated at once, we lose the computational
gain from the TMP algorithms. The denoising properties of these
algorithms are still preserved, however.

In their work, Cand̀es and Romberg advocate the use of Partial or
Mutilated Fourier Transform as their measurement basis, guided by
the physical acquisition of tomography signals. We propose a similar
method, denoted the Permuted Fast Fourier Transform (PFFT), as
y = F (x) = FFT1:M/2(P(x)), whereP(x) is a fixed permutation of
the samples in the vectorx, performed before the truncated transform
FFT1:M/2 is applied, in which only the firstM/2 Fourier coefficients
are kept — giving usM measurements from the signal by counting
the real and imaginary parts of the coefficients as separate measure-
ments. The PFFT measurement vectors tend to be incoherent with
any standard basis, including the (nonpermuted) Fourier basis. Other
transforms can be used together with the permutation technique, such

as the Discrete Cosine Transform.
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