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Abstract— Compressed sensing is an emerging field based on
the revelation that a small group of linear projections of a
sparse signal contains enough information for reconstruction. In
this paper we introduce a new theory fordistributed compressed
sensing (DCS) that enables new distributed coding algorithms for
multi-signal ensembles that exploit both intra- and inter-signal
correlation structures. The DCS theory rests on a new concept
that we term the joint sparsity of a signal ensemble. We study
in detail two simple models for jointly sparse signals, propose
algorithms for joint recovery of multiple signals from incoherent
projections, and characterize theoretically and empirically the
number of measurements per sensor required for accurate
reconstruction. We establish a parallel with the Slepian-Wolf
theorem from information theory and establish upper and lower
bounds on the measurement rates required for encoding jointly
sparse signals. In one of our models, the results are asymptotically
best-possible, meaning that both the upper and lower bounds
match the performance of our practical algorithms. In some sense
DCS is a framework for distributed compression of sources with
memory, which has remained a challenging problem for some
time. DCS is immediately applicable to a range of problems in
sensor networks and arrays.

I. I NTRODUCTION

A core tenet of signal processing and information theory is
that signals, images, and other data often contain some typeof
structure that enables intelligent representation and process-
ing. Current state-of-the-art compression algorithms employ
a decorrelating transform such as an exact or approximate
Karhunen-Lòeve transform (KLT) to compact a correlated
signal’s energy into just a few essential coefficients. Such
transform codersexploit the fact that many signals have a
sparserepresentation in terms of some basis, meaning that a
small numberK of adaptively chosen transform coefficients
can be transmitted or stored rather thanN À K signal
samples.

A. Distributed source coding

While the theory and practice of compression have been
well developed for individual signals, many applications in-
volve multiple signals, for which there has been less progress.
As a motivating example, consider asensor network, in which
a number of distributed nodes acquire data and report it to a
central collection point [1]. In such networks, communication
energy and bandwidth are often scarce resources, making the
reduction of communication critical. Fortunately, since the
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sensors presumably observe related phenomena, the ensemble
of signals they acquire can be expected to possess some joint
structure, orinter-signal correlation, in addition to theintra-
signal correlation in each individual sensor’s measurements.
In such settings,distributed source codingthat exploits both
types of correlation might allow a substantial savings on
communication costs [2–4].

A number of distributed coding algorithms have been de-
veloped that involve collaboration amongst the sensors [5,6].
Any collaboration, however, involves some amount of inter-
sensor communication overhead. TheSlepian-Wolfframework
for lossless distributed coding [2–4] offers a collaboration-
free approach in which each sensor node could communicate
losslessly at its conditional entropy rate, rather than at its
individual entropy rate. Unfortunately, however, most existing
coding algorithms [3, 4] exploit only inter-signal correlations
and not intra-signal correlations, and there has been only
limited progress on distributed coding of so-called “sources
with memory.”

B. Compressed sensing (CS)

A new framework for single-signal sensing and compres-
sion has developed recently under the rubric ofCompressed
Sensing(CS) [7, 8]. CS builds on the surprising revelation that
a signal having a sparse representation in one basis can be
recovered from a small number of projections onto a second
basis that isincoherentwith the first.1 In fact, for an N -
sample signal that isK-sparse,2 roughly cK projections of
the signal onto the incoherent basis are required to reconstruct
the signal with high probability (typicallyc ≈ 3 or 4). This
has promising implications for applications involving sparse
signal acquisition. Instead of sampling aK-sparse signalN
times, only cK incoherent measurements suffice, whereK
can be orders of magnitude less thanN . Moreover, thecK
measurements need not be manipulated in any way before be-
ing transmitted, except possibly for some quantization. Finally,
independent and identically distributed (i.i.d.) Gaussian or
Bernoulli/Rademacher (random±1) vectors provide a useful,
universal incoherent measurement basis. While powerful, the
CS theory at present is designed mainly to exploit intra-signal
structures at a single sensor. To the best of our knowledge, the
only work to date that applies CS in a multi-sensor setting is
Haupt and Nowak [10]. However, while their scheme exploits
inter-signal correlations, it ignores intra-signal correlations.

1Roughly speaking,incoherencemeans that no element of one basis has a
sparse representation in terms of the other basis [7–9].

2By K-sparse, we mean that the signal can be written as a sum ofK basis
functions.



C. Distributed compressed sensing (DCS)

In this paper we introduce a new theory fordistributed
compressed sensing(DCS) that enables new distributed coding
algorithms that exploit both intra- and inter-signal correlation
structures. In a typical DCS scenario, a number of sensors
measure signals (of any dimension) that are each individually
sparse in some basis and also correlated from sensor to sensor.
Each sensorindependentlyencodes its signal by projecting it
onto another, incoherent basis (such as a random one) and
then transmits just a few of the resulting coefficients to a
single collection point. Under the right conditions, a decoder
at the collection point canjointly reconstruct all of the signals
precisely.

The DCS theory rests on a concept that we term thejoint
sparsity of a signal ensemble. We study two models for
jointly sparse signals, propose algorithms for joint recovery of
multiple signals from incoherent projections, and characterize
the number of measurements per sensor required for accurate
reconstruction. While the sensors operate entirely without
collaboration, we see dramatic savings relative to the number
measurements required for separate CS decoding.

Our DCS coding schemes share many of the attractive
and intriguing properties of CS, particularly when we em-
ploy random projections at the sensors. In addition to being
universally incoherent, random measurements are alsofuture-
proof: if a better sparsity-inducing basis is found, then the
same random measurements can be used to reconstruct an even
more accurate view of the environment. Using a pseudorandom
basis (with a random seed) effectively implements a weak form
of encryption: the randomized measurements will themselves
resemble noise and be meaningless to an observer who does
not know the associated seed. Random coding is alsoro-
bust: the randomized measurements coming from each sensor
have equal priority, unlike transform coefficients in current
coders. Thus they allow aprogressively better reconstruction
of the data as more measurements are obtained; one or more
measurements can also be lost without corrupting the entire
reconstruction. Finally, DCS distributes its computational com-
plexity asymmetrically, placing most of it in the joint decoder,
which will often have more substantial resources than any
individual sensor node.

This paper is organized as follows. Section II provides
background on CS. Section III outlines our two models for
joint sparsity. Section IV overviews our results, which are
highlighted in the talk, and Section V concludes.

II. COMPRESSEDSENSING

Suppose thatx is a signal and letΨ = {ψ1, ψ2, . . . } be
a dictionary of vectors. When we say thatx is sparse, we
mean thatx is well approximated by a linear combination of
a small group of vectors fromΨ. That is,x ≈

∑K

i=1
θni

ψni

where K is small; we say that the signalx is K-sparse in
Ψ. The CS theory states that it is possible to construct an
M × N measurementmatrix Φ, where M ¿ N , yet the
measurementsy = Φx preserve the essential information
aboutx. For example, letΦ be acK × N matrix with i.i.d.
Gaussian entries, wherec = c(N,K) ≈ log

2
(1 + N/K) is an

oversampling factor. Using such a matrix it is possible, with
high probability, to recover every signal that isK-sparse in the
basisΨ from its image underΦ. Moreover, for signals that are
not K-sparse butcompressible, meaning that their coefficient
magnitudes decay exponentially, there are tractable algorithms
that achieve not more than a multiple of the error of the best
K-term approximation of the signal.

Several algorithms have been proposed for recoveringx
from the measurementsy, each requiring a slightly different
constantc. The canonical approach [7, 8] uses linear program-
ming to solve thè 1 minimization problem

θ̂ = arg min
θ

‖θ‖1 subject to ΦΨθ = y.

This problem can be solved in polynomial time but is some-
what slow. Additional methods have been proposed involving
greedy pursuit methods. Examples include Matching Pursuit
(MP) and Orthogonal Matching Pursuit (OMP), which tend to
require fewer computations but at the expense of slightly more
measurements [9].

III. JOINT SPARSITY MODELS

In this section, we generalize the notion of a signal being
sparse in some basis to the notion of an ensemble of signals
being jointly sparse. We consider two differentjoint sparsity
models (JSMs) that apply in different situations. In these
models, each signal is itself sparse, and so we could use the
CS framework from above to encode and decode each one
separately. However, there also exists a framework whereina
joint representationfor the ensemble uses fewer total vectors.

We use the following notation for our signal ensembles and
measurement model. Denote thesignals in the ensemble by
xj , j ∈ {1, 2, . . . , J}, and assume that each signalxj ∈ R

N .
We assume that there exists a knownsparse basisΨ for R

N

in which thexj can be sparsely represented. Denote byΦj the
measurement matrixfor signalj; Φj is Mj×N and, in general,
the entries ofΦj are different for eachj. Thus,yj = Φjxj

consists ofMj < N incoherent measurementsof xj .

A. JSM-1: Sparse common component + innovations

In this model, all signals share acommonsparse component
while each individual signal contains a sparseinnovation
component; that is,

xj = z + zj , j ∈ {1, 2, . . . , J}

with

z = Ψθz, ‖θz‖0 = K and zj = Ψθj , ‖θj‖0 = Kj .

Thus, the signalz is common to all of thexj and has sparsity
K in basisΨ.3 The signalszj are the unique portions of the
xj and have sparsityKj in the same basis.

A practical situation well-modeled by JSM-1 is a group
of sensors measuring temperatures at a number of outdoor
locations throughout the day. The temperature readingsxj

3The `0 norm ‖θ‖0 merely counts the number of nonzero entries in the
vectorθ.
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have both temporal (intra-signal) and spatial (inter-signal) cor-
relations. Global factors, such as the sun and prevailing winds,
could have an effectz that is both common to all sensors
and structured enough to permit sparse representation. More
local factors, such as shade, water, or animals, could contribute
localized innovationszj that are also structured (and hence
sparse). A similar scenario could be imagined for a network
of sensors recording light intensities, air pressure, or other
phenomena. All of these scenarios correspond to measuring
properties of physical processes that change smoothly in time
and in space and thus are highly correlated.

B. JSM-2: Common sparse supports

In this model, all signals are constructed from the same
sparse set of basis vectors, but with different coefficients; that
is,

xj = Ψθj , j ∈ {1, 2, . . . , J},

where each θj is supported only on the sameΩ ⊂
{1, 2, . . . , N} with |Ω| = K. Hence, all signals havè0

sparsity ofK, and all are constructed from the sameK basis
elements, but with arbitrarily different coefficients.

A practical situation well-modeled by JSM-2 is where
multiple sensors acquire the same signal but with phase
shifts and attenuations caused by signal propagation. In many
cases it is critical to recover each one of the sensed signals,
such as in many acoustic localization and array processing
algorithms. Another useful application for JSM-2 is MIMO
communication [11].

IV. OVERVIEW OF RESULTS

For each of these models, we propose algorithms for joint
signal recovery from incoherent projections and characterize
theoretically and empirically the number of measurements per
sensor required for accurate reconstruction. We now briefly
overview these results, which will be highlighted in the talk.
(See also [12–14] for more details on our recent work.)

A. JSM-1: Sparse common component + innovations

For this model, we propose an analytical framework in-
spired by principles of information theory. This allows us
to characterize the measurement ratesMj required tojointly
reconstruct the signalsxj . We see that the measurement rates
relate directly to the signals’conditional sparsities, in parallel
with the Slepian-Wolf theory. More specifically, we formalize
the following intuition. Consider the simple case ofJ = 2
signals. By employing the CS machinery, we might expect
that (i) (K + K1)c coefficients suffice to reconstructx1, (ii )
(K +K2)c coefficients suffice to reconstructx2, yet only (iii )
(K+K1+K2)c coefficients should suffice to reconstruct both
x1 andx2, because we haveK + K1 + K2 nonzero elements
in x1 andx2. In addition, given the(K +K1)c measurements
for x1 as side information, and assuming that the partitioning
of x1 into z and z1 is known, cK2 measurements that
describez2 should allow reconstruction ofx2. Formalizing
these arguments allows us to establish theoretical lower bounds
on the required measurement rates at each sensor; Figure 1
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Fig. 1. Converse bounds and achievable measurement rates forJ = 2

signals with common sparse component and sparse innovations (JSM-
1). The measurement ratesRj := Mj/N reflect the number of
measurements normalized by the signal length. The pink curve denotes
the rates required for separable CS signal reconstruction.

shows such a bound for the case ofJ = 2 signals, with signal
lengthsN = 1000 and sparsitiesK = 200, K1 = K2 = 50.

We also establish upper bounds on the required mea-
surement ratesMj by proposing a specific algorithm for
reconstruction [12]. The algorithm uses carefully designed
measurement matricesΦj (in which some rows are identical
and some differ) so that the resulting measurements can
be combined to allow step-by-step recovery of the sparse
components. We see that the theoretical ratesMj are below
those required for separable CS recovery of each signalxj

(see Figure 1).
Finally, we propose a reconstruction technique based on

a single execution of a linear program, which seeks the
sparsest components[z; z1; . . . zJ ] that account for the
observed measurements. Numerical experiments support such
an approach (see Figure 1).

B. JSM-2: Common sparse supports

Under the JSM-2 signal ensemble model, independent re-
covery of each signal vià1 minimization would requirecK
measurements per signal. However, we propose algorithms
inspired by conventional greedy pursuit algorithms (such as
OMP [9]) that can substantially reduce this number. In the
single-signal case, OMP iteratively constructs the sparsesup-
port setΩ; decisions are based on inner products between the
columns ofΦΨ and a residual. In the multi-signal case, there
are more clues available for determining the elements ofΩ.

To establish a theoretical justification for our approach, we
first propose a simple One-Step Greedy Algorithm (OSGA)
that combines all of the measurements and seeks the largest
correlations with the columns of theΦjΨ. We have established
that, assuming thatΦj has i.i.d. Gaussian entries and that
the nonzero coefficients in theθj are i.i.d. Gaussian, then
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Fig. 2. Reconstructing a signal ensemble with common sparse supports (JSM-
2). We plot the probability of perfect reconstruction via DCS-SOMP (solid
lines) and independent CS reconstruction (dashed lines) asa function of the
number of measurements per signalM and the number of signalsJ . We fix
the signal length toN = 50 and the sparsity toK = 5. An oracle encoder
that knows the positions of the large signal expansion coefficients would use5
measurements per signal.

with M ≥ 1 measurements per signal, OSGA recoversΩ
with probability approaching1 as J → ∞. Moreover, with
M ≥ K measurements per signal, OSGA recovers allxj

with probability approaching1 as J → ∞. This meets the
theoretical lower bound forMj .

In practice, OSGA can be improved upon by using an
iterative greedy algorithm. We propose a simple variant of
Simultaneous Orthogonal Matching Pursuit (SOMP) [11],
which we term DCS-SOMP [14]. For this algorithm, Figure 2
plots the performance as the number of sensors varies from
J = 1 to 32. We fix the signal lengths atN = 50 and
the sparsity of each signal toK = 5. With DCS-SOMP, for
perfect reconstruction of all signals the average number of
measurements per signal decreases as a function ofJ . The
trend suggests that, for very largeJ , close toK measurements
per signal should suffice. On the contrary, with independent
CS reconstruction, for perfect reconstruction of all signals the
number of measurements per sensorincreasesas a function
of J . This surprise is due to the fact that each signal will
experience an independent probabilityp ≤ 1 of successful
reconstruction; therefore the overall probability of complete
success ispJ . Consequently, each sensor must compensate by
making additional measurements.

V. EXTENSIONS AND CONCLUSIONS

We have taken the first steps towards extending the theory
and practice of CS to multi-signal, distributed settings. Our
simple joint sparsity models (JSMs) capture the essence of
real physical scenarios, illustrate the basic analysis andalgo-
rithmic techniques, and indicate the gains to be realized from
joint recovery. Additional investigations are ongoing, including
additional models for joint sparsity, extensions to compressible
signals, and examining the effect of noise and quantizationin
the measurements.
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