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Abstract— Compressed sensing is an emerging field based onsensors presumably observe related phenomena, the eesembl
the revelation that a small group of linear projections of a of signals they acquire can be expected to possess some joint
sparse signal contains enough information for reconstruction. n structure, orinter-signal correlation in addition to theintra-

this paper we introduce a new theory fordistributed compressed . | lationi h individual ) t
sensing (DCS) that enables new distributed coding algorithms for Signal correlationin each individual sensors measurements.

multi-signal ensembles that exploit both intra- and inter-signal N such settingsdistributed source codinghat exploits both
correlation structures. The DCS theory rests on a new concept types of correlation might allow a substantial savings on
that we term the joint sparsity of a signal ensemble. We study communication costs [2—4].

in detail two simple models for jointly sparse signals, propose A nymper of distributed coding algorithms have been de-
algorithms for joint recovery of multiple signals from incoherent . .

projections, and characterize theoretically and empirically the veloped that 'n_V°|Ve coIIabor§t|on amongst the Sensor@l[S’
number of measurements per sensor required for accurate Any collaboration, however, involves some amount of inter-
reconstruction. We establish a parallel with the Slepian-Wolf sensor communication overhead. Tlepian-Wolfframework
theorem from information theory and establish upper and lower  for |ossless distributed coding [2—4] offers a collabarati
bounds on the measurement rates required for encoding jointly free approach in which each sensor node could communicate

sparse signals. In one of our models, the results are asymptotically . . .
best-possible, meaning that both the upper and lower bounds losslessly at its conditional entropy rate, rather thantst i

match the performance of our practical algorithms. In some sens  individual entropy rate. Unfortunately, however, moststixig
DCS is a framework for distributed compression of sources with coding algorithms [3, 4] exploit only inter-signal corrétms

memory, which has remained a challenging problem for some and not intra-signal correlations, and there has been only

time. DCS is immediately applicable to a range of problems in limited progress on distributed coding of so-called “s@src
sensor networks and arrays. . .
with memory.

. INTRODUCTION B. Compressed sensing (CS)

A core tenet of signal processing and information theory is o new framework for single-signal sensing and compres-
that signals, images, and other data often contain SomeolyPgion has developed recently under the rubricCaimpressed
_structure that enables intelligent repres_entation _and Proces§ansingCs) [7, 8]. CS builds on the surprising revelation that
ing. Current state-of-the-art compression algorithms |6yp 5 sjgnal having a sparse representation in one basis can be

a decorrelating transform such as an exact or approXimaf&overed from a small number of projections onto a second
Karhunen-Leve transform (KLT) to compact a correlateqygis that isincoherentwith the first! In fact, for an N-
signal’'s energy into jl_Jst a few essential cogfﬁcients. Su%lémple signal that isc-sparsé roughly ¢k projections of
transform codersexploit the fact that many signals have ne signal onto the incoherent basis are required to reaamst
sparserepresentation in terms of some basis, meaning thaji@ signal with high probability (typically: ~ 3 or 4). This
small numberK of adaptively chosen transform coefficients, 5q promising implications for applications involving s

can be transmitted or stored rather thah > K signal gjgna| acquisition. Instead of samplingfé-sparse signalV
samples. times, only cK incoherent measurements suffice, whéfe
can be orders of magnitude less than Moreover, thecK
A. Distributed source coding measurements need not be manipulated in any way before be-
g}g transmitted, except possibly for some quantizationahy,
independent and identically distributed (i.i.d.) Gaussiar
Bernoulli/Rademacher (randoml) vectors provide a useful,
universalincoherent measurement basis. While powerful, the
a number of distributed nodes acquire data and report it toc§ theory at present is designed mainly to exploit intraraig
structures at a single sensor. To the best of our knowletige, t

central collection point [1]. In such networks, communiicat K 10 date that lies CS | i g |
energy and bandwidth are often scarce resources, making Eﬁ!—:y work 1o date that applies N a Multi-sensor setiing 1S

reduction of communication critical. Fortunately, sindeet . aupt_and Nowak [.10]' I—!oyvever, V\{h'le th.elr SChe”.‘e exploits
inter-signal correlations, it ignores intra-signal ctations.

While the theory and practice of compression have be
well developed for individual signals, many applicatioms i
volve multiple signals, for which there has been less pregyre
As a motivating example, consideisansor networkin which
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C. Distributed compressed sensing (DCS) oversampling factarUsing such a matrix it is possible, with
In this paper we introduce a new theory fdistributed high probabillity,.to recover every signal thatl%’s;parse in the
compressed sensif§CS) that enables new distributed coding@SiS¥ from its image undes. Moreover, for signals that are
algorithms that exploit both intra- and inter-signal céatien 1Ot K -sparse butompressiblemeaning that their coefficient

structures. In a typical DCS scenario, a number of sensép@gnitudes decay exponentially, there are tractable iétigos

measure signals (of any dimension) that are each indiuyjuaﬁhat achieve no_t more than a multlple of the error of the best
sparse in some basis and also correlated from sensor torserf&6{€™M approximation of the signal. _
Each sensoindependentlyencodes its signal by projecting it S€veral algorithms have been proposed for recovering
onto another, incoherent basis (such as a random one) &9 the measurements each requiring a slightly different
then transmits just a few of the resulting coefficients to ¢Pnstant. The canonical approach [7, 8] uses linear program-
single collection point. Under the right conditions, a déeo MiNg to solve the’; minimization problem

at the collection point cajointly reconstruct all of the signals
precisely.

The DCS theory rests on a concept that we termjdfi® This problem can be solved in polynomial time but is some-
sparsity of a signal ensemble. We study two models fofhat slow. Additional methods have been proposed involving
jointly sparse signals, propose algorithms for joint resgwof greedy pursuit methods. Examples include Matching Pursuit
multiple signals from incoherent projections, and chaazé (MP) and Orthogonal Matching Pursuit (OMP), which tend to

the number of measurements per sensor required for accuratfuire fewer computations but at the expense of slightlyemo
reconstruction. While the sensors operate entirely withopfeasurements [9].

collaboration, we see dramatic savings relative to the rarmb
measurements required for separate CS decoding.

Our DCS coding schemes share many of the attractive . ) . . ) )
and intriguing properties of CS, particularly when we em- In th|§ section, we generahze.the notion of a signal b.elng
ploy random projections at the sensors. In addition to beif§arseé in some basis to the notion of an ensemble of signals
universally incoherent, random measurements arefatspe- D€ingjointly sparse We consider two differenjoint sparsity
proof if a better sparsity-inducing basis is found, then th@0dels (JSMs) that apply in different situations. In these
same random measurements can be used to reconstruct an BWG¢!S, each signal is itself sparse, and so we could use the
more accurate view of the environment. Using a pseudorandém framework from above to encode and decode each one
basis (with a random seed) effectively implements aweahfo,§gparately. How_ever, there also exists a framework whexein
of encryption the randomized measurements will themselvdQint representatiorfor the ensemble uses fewer total vectors.
resemble noise and be meaningless to an observer who dodde use the following notation for our signal ensembles and
not know the associated seed. Random coding is elso Measurement model. Denote thiginalsin the ensemble by
bust the randomized measurements coming from each sen&orj € {1,2,..., ./}, and assume that each signgle R".
have equal priority, unlike transform coefficients in cutre \We assume that there exists a knosparse basisy for RV
coders. Thus they allow progressively better reconstructionin Which thez; can be sparsely represented. Denotebhyhe
of the data as more measurements are obtained; one or nfBRasurement matrbor signal;; ®; is M; < N and, in general,
measurements can also be lost without corrupting the entRe entries of®; are different for eacly. Thus,y; = ®;z;
reconstruction. Finally, DCS distributes its computagibcom-  consists ofM; < N incoherent measurementé ;.
plexity asymmetrically, placing most of it in the joint deter,

which will often have more substantial resources than apy jSM-1: Sparse common component + innovations

individual sensor node. . .
: . . . . In this model, all signals sharecammonrsparse component
This paper is organized as follows. Section Il provides, . T . . . .
X . while each individual signal contains a sparsovation
background on CS. Section Ill outlines our two models for

joint sparsity. Section IV overviews our results, which argomponent; that is,

highlighted in the talk, and Section V concludes. rj=z+z, je{l,2,...,J}

0= argmein |0]]1 subjectto dTH =y.

IIl. JOINT SPARSITY MODELS

with
Il. COMPRESSEDSENSING

Suppose that is a signal and leW = {¢y,1,...} be 2 =0, [0:o=K and 2z =V0;, [6;]o=K;.
a dictionary of vectors. When we say that is sparse, we Thus, the signat is common to all of ther; and has sparsity

mean ;[Iha@ IS W?" apz(proxflm?;/ed_rﬁytg Imeir coIr{nblenatlon OfK in basis®.® The signalsz; are the unique portions of the
a small group of vectors fron¥. That is,z & 3, n.¥n, x; and have sparsity(; in the same basis.

v\I\I/he;[E KCIZ strr]nall; W(ta tsay ttr?a;t .ih.e 5|gn@1b||s ];(-sparste mt A practical situation well-modeled by JSM-1 is a group
- Ihe eory states thal It 1S possible 10 construct g cq\qq¢ measuring temperatures at a number of outdoor

M x N measuremenmatrix ®, where M < N’. yet thg locations throughout the day. The temperature readings
measurementy = &z preserve the essential information

abOUta?- For example, letb be acK x N matrix with _i'i'd' 3The £y norm ||@]|o merely counts the number of nonzero entries in the
Gaussian entries, where= ¢(N, K) ~ log,(1+ N/K) is an  vectoré.



have both temporal (intra-signal) and spatial (inter-alynor- Measurement Regions

relations. Global factors, such as the sun and prevailimgisyi L v ' | = == Converse
could have an effect that is both common to all sensors 0.9 ' A -
and structured enough to permit sparse representatione Mor ! i Achievable
local factors, such as shade, water, or animals, could ibokgr 0.8f ! . | =~ -Separate
localized innovationsy; that are also structured (and hence 0.7l ! :
sparse). A similar scenario could be imagined for a network ' ! ° i
of sensors recording light intensities, air pressure, dweiot 0.6/ ! ° :
phenomena. All of these scenarios correspond to measuring o ' TToTTTT T
properties of physical processes that change smoothlynia ti 0.5 A _ _
and in space and thus are highly correlated. o4l . Simulation
B. JSM-2: Common sparse supports 0.3y \\\

In this model, all signals are constructed from the same 0.2f \\ _______________
sparse set of basis vectors, but with different coefficiehist
is, 0% 0.2 0.4 0.6 0.8 1

x;=00;, je{l,2,...,J}, Ry

where eachd; is supported only on the sam& c Fig-L Converse bounds and achievable measurement ratés=cz
1,2 N} \;vith Q| = K. Hence, all signals haveé, signals with common sparse component and sparse innovations (JSM-

. . 1). The measurement ratdd; := M;/N reflect the number of
sparsity of ', and all are constructed from the saiiebasis - measurements normalized by the signal length. The pink curve denotes
elements, but with arbitrarily different coefficients. the rates required for separable CS signal reconstruction.

A practical situation well-modeled by JSM-2 is where
multiple sensors acquire the same signal but with phase
shifts and attenuations caused by signal propagation. lymahows such a bound for the caseJo& 2 signals, with signal
cases it is critical to recover each one of the sensed signddngths N = 1000 and sparsitied’ = 200, K; = Ko = 50.
such as in many acoustic localization and array processingVe also establish upper bounds on the required mea-
algorithms. Another useful application for JSM-2 is MIMOsurement rates\/; by proposing a specific algorithm for

communication [11]. reconstruction [12]. The algorithm uses carefully designe
measurement matriceB; (in which some rows are identical
IV. OVERVIEW OF RESULTS and some differ) so that the resulting measurements can

For each of these models, we propose algorithms for joiRf combined to allow step-by-step recovery of the sparse
signal recovery from incoherent projections and chariter COMPONents. We see that the theoretical ratgsare below
theoretically and empirically the number of measuremeats ghose required for separable CS recovery of each signal
sensor required for accurate reconstruction. We now brief§ee Figure 1). _ _
overview these results, which will be highlighted in thektal  Finally, we propose a reconstruction technique based on

(See also [12—14] for more details on our recent work.) & single execution of a linear program, which seeks the
sparsest componen{s; z;; ... zy| that account for the

A JSM-1: S +i . observed measurements. Numerical experiments suppdrt suc
. -1: Sparse common component + innovations an approach (see Figure 1).

For this model, we propose an analytical framework in-
spired by principles of information theory. This allows us _
to characterize the measurement ratés required tojointly B JSM-2: Common sparse supports
reconstruct the signals;. We see that the measurement rates Under the JSM-2 signal ensemble model, independent re-
relate directly to the signal€onditional sparsitiesin parallel covery of each signal vid; minimization would requirecKX
with the Slepian-Wolf theory. More specifically, we fornmdi measurements per signal. However, we propose algorithms
the following intuition. Consider the simple case #f= 2 inspired by conventional greedy pursuit algorithms (sush a
signals. By employing the CS machinery, we might expe@MP [9]) that can substantially reduce this number. In the
that () (K + K;)c coefficients suffice to reconstruet, (i) single-signal case, OMP iteratively constructs the spauge
(K + K>)c coefficients suffice to reconstrueg, yet only (i) port setQ2; decisions are based on inner products between the
(K + K, + K»)c coefficients should suffice to reconstruct botleolumns of®W¥ and a residual. In the multi-signal case, there
r1 andx,, because we havE + K; + K5 nonzero elements are more clues available for determining the elementQ.of
in z; andz.. In addition, given thé K + K;)c measurements  To establish a theoretical justification for our approack, w
for z; as side information, and assuming that the partitionirfgst propose a simple One-Step Greedy Algorithm (OSGA)
of z; into z and z; is known, cK, measurements thatthat combines all of the measurements and seeks the largest
describez; should allow reconstruction of,. Formalizing correlations with the columns of thie; . We have established
these arguments allows us to establish theoretical lowandi® that, assuming tha®; has i.i.d. Gaussian entries and that
on the required measurement rates at each sensor; Figurthel nonzero coefficients in thé; are i.i.d. Gaussian, then
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V. EXTENSIONS AND CONCLUSIONS

We have taken the first steps towards extending the theory
and practice of CS to multi-signal, distributed settingsir O
simple joint sparsity models (JSMs) capture the essence of
real physical scenarios, illustrate the basic analysis&ago-
rithmic techniques, and indicate the gains to be realizethfr
joint recovery. Additional investigations are ongoing;lirding
additional models for joint sparsity, extensions to corspifele
signals, and examining the effect of noise and quantization
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Fig. 2. Reconstructing a signal ensemble with common sparse supp8its (
2). We plot the probability of perfect reconstruction via 8#GOMP (solid
lines) and independent CS reconstruction (dashed linea)fasction of the
number of measurements per sigiidl and the number of signals. We fix
the signal length taV = 50 and the sparsity t& = 5. An oracle encoder
that knows the positions of the large signal expansion aoefits would usé
measurements per signal.

(1]

(2]

(3]
with M > 1 measurements per signal, OSGA recovers
with probability approaching as J — oo. Moreover, with
M > K measurements per signal, OSGA recoversagll
with probability approaching asJ — oo. This meets the
theoretical lower bound foi/;.

(4]

(5]

In practice, OSGA can be improved upon by using an
iterative greedy algorithm. We propose a simple variant of6]
Simultaneous Orthogonal Matching Pursuit (SOMP) [11]17]
which we term DCS-SOMP [14]. For this algorithm, Figure 2
plots the performance as the number of sensors varies from
J = 1 to 32. We fix the signal lengths av = 50 and [g]
the sparsity of each signal thf = 5. With DCS-SOMP, for 1l
perfect reconstruction of all signals the average number [06]
measurements per signal decreases as a functioh dhe [11
trend suggests that, for very larde close toK measurements
per signal should suffice. On the contrary, with independent
CS reconstruction, for perfect reconstruction of all sigrthe (12]
number of measurements per sensmreasesas a function
of J. This surprise is due to the fact that each signal will3]
experience an independent probabiljgy< 1 of successful
reconstruction; therefore the overall probability of cdete |14
success ig”. Consequently, each sensor must compensate by
making additional measurements.

—

the measurements.
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