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ABSTRACT

A fast objects detecting method is proposed, which is based on
the variance-maximization learning of lifting dyadic wavelet fil-
ters. First, it is shown that the sum of lifting wavelet coefficients
in horizontal and vertical directions defines an elliptic-type of dis-
crete operator containing free parameters. The free parameters are
learned so as to maximize the variance of lifting wavelet coeffi-
cients for a target object. Since this problem is an ill-posed prob-
lem, a regularization method is employed to solve it. Objects in
a query image similar to the target object are detected by the use
of the learned filter. Simulation concerns the detection of narrow
eyes from faces.

1. INTRODUCTION

Fast and exact detection of objects in an image is an important
problem in the research areas such as computer vision and robot
vision. Many objects detection methods have been developed so
far [8]. Unlike such detection techniques, we have recently pro-
posed a new detection method using lifting dyadic wavelet filters
for person identification [5, 6, 7]. These papers employ a cosine-
based learning algorithm of lifting dyadic wavelet filters. Since
the goal of these papers lies in person identification, the details of
facial parts must be learned. So, we learned several lifting filters
at only one location of each facial part so as to detect it exactly.
However, the constructed filters are low-pass filters and, therefore,
our cosine-based method is not robust for changing brightness.

In this paper, we propose a fast and robust method for detect-
ing objects in an image using the variance-maximization learning
of lifting dyadic wavelet filters. It is known in numerical experi-
ments that the histogram of wavelet coefficients for a natural im-
age behaves like supergaussian distribution. Thus, the variance of
wavelet coefficients characterizes the image. We utilize this fact to
learn free parameters contained in a lifting filter.

First, the sum of lifting dyadic wavelet filters in horizontal and
vertical directions is shown to be a discretization scheme for an
elliptic-type of partial differential operator containing free param-
eters. We learn the free parameters so as to maximize the variance
of lifting wavelet coefficients for a target object in a training im-
age. In the learning process, we put the condition that a vector of
lifting filters has the norm 1 and its each component becomes a
high-pass filter. We also put the condition that lifting wavelet co-
efficients in an image region except for the target object become
small. Under these conditions, a functional to be minimized is de-
rived for learning the free parameters. However, this minimization
problem is an ill-posed problem. So, we derive a new functional to

be minimized by adding a regularization term to the original func-
tional. We can use the steepest descent method to minimize the
functional. However, this method is time-consuming to obtain the
convergence results. To realize fast learning, we derive a system of
simultaneous nonlinear equations by differentiating the functional,
and solve the system exploiting Newton’s method.

Objects in a query image similar to the target object is detected
by applying a lifting filter having the learned parameters to the
query image. Actually, we extract the location where the absolute
value of a lifting wavelet coefficient exceeds the standard deviation
of lifting wavelet coefficients computed for the target object.

In simulation, the anger face of a female is used as a training
image. The target object is her right eye. A lifting filter including
the learned parameters is applied to various human faces whose ex-
pressions are standard, smile, anger and scream. It is also checked
whether the proposed method is robust for changing brightness for
some illuminated facial images.

The remainder of this paper is organized as follows. Section 2
describes the relation between a lifting dyadic wavelet filter and an
elliptic-type of partial differential operator. Our learning algorithm
is presented in Section 3. In Section 4, we describe a detection
method. Section 5 is simulation. Finally, we conclude with Section
6.

2. CHARACTERIZATION OF LIFTING DYADIC
WAVELET FILTERS

Let {ho
n, go

n, h̃o
n, g̃o

n} be a set of dyadic wavelet filters [2]. The
filters ho

n andgo
n are called low-pass and high-pass analysis fil-

ters, respectively, and the filtersh̃o
n andg̃o

n are low-pass and high-
pass synthesis filters, respectively. A lifting scheme for the dyadic
wavelet is described as follows:

hn = ho
n,

gn = go
n −

∑
k

λkho
n−k, (1)

h̃n = h̃o
n +

∑
k

λ−kg̃o
n−k,

g̃n = g̃o
n.

This scheme generalizes Sweldens’ biorthogonal lifting scheme
[4]. We proved that the lifted filters{hn, gn, h̃n, g̃n} also become
a set of dyadic wavelet filters [1]. Hereλk ’s denote free parame-
ters. In this paper, we only use the lifted filter (1).



Let us denote an image byui,j . Applying the low-pass analy-
sis filterho

n in vertical direction toui,j , we get

Ccol
m,k =

∑
j

ho
jum,k+j .

Next, an application of the lifted filter (1) in horizontal direction to
Ccol

m,k yields the following lifting wavelet coefficients

Dm,k =
∑

j

gd
i Ccol

m+i,k. (2)

Heregd
i ’s are given by

gd
i = go

i −
L∑

l=−L

λd
l ho

i−l, i = −L − M, ..., L + M + 1,

whereλd
l ’s represent free parameters in horizontal direction and

we assumed that the indexi of the filter ho
i moves from−M to

M + 1. Similarly, we obtain lifting wavelet coefficients in vertical
direction

Em,k =
∑

j

ge
j Crow

m,k+j . (3)

HereCrow
m,k is given by

Crow
m,k =

∑
i

ho
i um+i,k,

andge
j ’s are determined as follows:

ge
j = go

j −
L∑

l=−L

λe
l h

o
j−l, j = −L − M, ..., L + M + 1,

whereλe
l ’s represent free parameters in vertical direction.

We choose the initial high-pass filtersgo
n as go

1 = 0.5
√

2,
go
0 = go

2 = −0.25
√

2 andgo
i = 0 otherwise. Such dyadic wavelet

filters have been provided in [2]. We put

Hm,k = Dm,k + Em,k.

From (2) and (3), the sumHm,k can be written as

Hm,k =
∑

i

go
i Ccol

m+i,k +
∑

j

go
j Crow

m,k+j

−

(
L∑

l=−L

λd
l Cm+l,k +

L∑
l=−L

λe
l Cm,k+l

)
(4)

with Cm,k =
∑

i,j
ho

i h
o
jum+i,k+j . Therefore, a lifting filter de-

fined byHm,k approximates an elliptic-type of partial differential
operatorL(λd, λe) defined by

L(λd, λe)u = −
(

∂2

∂x2
(Iyu) +

∂2

∂y2
(Ixu)

)
− I(λd, λe)u.

Here Iyu, Ixu and I(λd, λe)u indicate the integral versions of
Ccol

m,k, Crow
m,k and the last term of (4), respectively, and

λd = (λd
−L, ..., λd

L), λe = (λe
−L, ..., λe

L).

3. LEARNING ALGORITHM

We describe a method for learning free parametersλd
l andλe

l for
objects detection. First, we expressHm,k in (4) in an inner product
form. Let us define a vectorg whose components are the lifting
filtersgd

i andge
j as

g = (gd
−L−M , ..., gd

L+M+1, g
e
−L−M , ..., ge

L+M+1)

and a vectorCm,k whose components consist of the low-pass
componentsCcol

m+i,k andCrow
m,k+j as

Cm,k = (Ccol
m−L−M,k, ..., Ccol

L+M+1,k,

Crow
m,k−L−M , ..., Crow

m,k+L+M+1).

Using these vectors,Hm,k can be written as

Hm,k = g · Cm,k,

where· denotes inner product.
Let us denote a training image also byui,j , and its domain

by Ωd. By ωd, we denote a target region which is a subimage of
ui,j , (i, j) ∈ Ωd. The number of pixels inωd is denoted byP . We
call ui,j for (i, j) ∈ ωd positive data, andui,j for (i, j) ∈ Ωd \ωd

negative data. Using these positive and negative data, we learn free
parametersλd

l andλe
l appeared in (4).

The variance ofHm,k for the positive data is given by

σ2 =
1

P

∑
(m,k)∈ωd

(g · (Cm,k − C̄))2. (5)

HereC̄ denotes the average ofCm,k. We extend the target object
periodically in horizontal and vertical directions, and impose the
condition

L∑
l=−L

(λd
l + λe

l ) = 0. (6)

Then, we can prove
g · C̄ = 0. (7)

This means thatg is a vector of high-pass filters, and that (5) can
be written as

σ2 =
1

P

∑
(m,k)∈ωd

(g · Cm,k)2. (8)

For the negative data, it is desirable to minimize

1

N

∑
(m,k)∈Ωd\ωd

(g · Cm,k)2, (9)

whereN is the number of pixels inΩd \ ωd.
Our learning algorithm for free parametersλd

l and λe
l is to

maximize (8) and to minimize (9) subject to the condition (6) and
normalization of the vectorg,

|g| = 1. (10)

The continuous version of this problem is to maximize∫
ω

(
L(λd, λe)u(x, y)

)2
dxdy



and to minimize∫
Ω\ω

(
L(λd, λe)u(x, y)

)2
dxdy

under the constraint (6) and an integral version of (10). HereΩ
is a domain corresponding toΩd, andω a domain corresponding
to ωd. This problem is an ill-posed problem and, therefore, the
discrete version is also an ill-posed problem, which yields unsta-
ble solutions. To overcome this difficulty, we use a regularization
method. Thus, a functional to be minimized is

J = − 1

2P

∑
(m,k)∈ωd

(g · Cm,k)2 +
K0

2N

∑
(m,k)∈Ωd\ωd

(g · Cm,k)2

+
K1

4
(|g|2 − 1)2 +

K2

2

(
L∑

l=−L

(λd
l + λe

l )

)2

+ δ

L∑
l=−L

(
(λd

l )2 + (λe
l )

2
)

.

(11)

Here the third and fourth terms of the right hand side come from
(10) and (6), respectively, andK0, K1 andK2 are penalty con-
stants. The last term means regularization andδ is a sufficiently
small positive number.

The functional (11) has a possibility of having many local min-
ima. Since it is difficult to gain a global minimum, we seek local
minima. The most popular technique for obtaining local minima is
the steepest descent method. However, this method needs a lot of
time for finding local minima. In this paper, we employ Newton’s
method to solve the problem fast. Newton’s method is applied to a
system of simultaneous nonlinear equations:

∂J

∂λd
l

= 0, l = −L, ..., L, (12)

∂J

∂λe
l

= 0, l = −L, ..., L. (13)

The process of solving (12) and (13) by Newton’s method gives
our learning algorithm of free parameters contained in the lifting
dyadic wavelet filter.

4. DETECTION ALGORITHM

Our detection algorithm involves the following steps:

1. Compute wavelet coefficients in horizontal and vertical di-
rections by applying the initial dyadic wavelet filters to a
query image.

2. By combining them with the parametersλd
l andλe

l learned
for the target object, compute the lifting wavelet coeffi-
cientsDm,k andEm,k defined by (2) and (3).

3. Calculate the sumHm,k = Dm,k + Em,k.

4. Find the locations(m, k) such that|Hm,k| ≥ Rσ, whereσ
is the standard deviation of lifting wavelet coefficients com-
puted for the target object andR denotes some constant.

5. Detect an image region, in which the extracted locations are
concentrated, as an object similar to the target object.

5. SIMULATION

Numerical experiments are carried out using the AR face database,
which was provided by Martines [3].

The initial filters we use are the cubic spline dyadic wavelet
filters listed in Table 1 [2]. The number of free parameters in each

Table 1. Cubic spline dyadic wavelet filters (only low-pass and
high-pass analysis filters)

n ho
n/

√
2 go

n/
√

2
-2 0.03125
-1 0.15625
0 0.31250 -0.25
1 0.31250 0.50
2 0.15625 -0.25
3 0.03125

direction is 15, i.e.,L = 7. Therefore, 30 free parameters are
determined exploiting our learning algorithm.

The gray scales of images are converted into the range[0, 10]
in our experiments. The training pattern is the image of a female
having210 × 200 size, shown in Figure 1(a). It is an anger face
whose eyes are narrow. As a target object, we extract the right eye
with 32 × 17 size from the face, which corresponds to positive
data. It is shown in Figure 1(b). Negative data are large wavelet
coefficients in an image region except for the target object.

(a) (b)

Fig. 1. (a) Training image, (b) Target object

The penalty constantsK0, K1 andK2 appeared in (11) are
chosen asK0 = 2.0 andK1 = K2 = 1000, respectively. The
regularization coefficientδ is selected asδ = 0.01. Newton’s
iteration for solving (12) and (13) was started from 0 vector. We
list the learned parameters in Table 2. The standard derivationσ
for the target isσ = 2.375139.

We tested the detection algorithm for the faces of 3 females
and 3 males, whose expressions involve standard, smile, anger and
scream. The constantR in the detection algorithm was chosen
asR = 1.2. Figure 2 shows the detection results. We see from
Figure 2 that almost all narrow eyes have been detected. However,
some eyebrows and teeth have also been extracted by mistake. We
also tried to detect objects similar to the target object for some
illuminated faces. The experimental results are shown in Figure 3.
Some eyes have been detected independent of illumination change.

The learning time was 1 msec and the detection time was
0.1 msec per face, by using laptop computer with Pentium M,
1.1GHz.

6. CONCLUSIONS AND FUTURE WORKS

We have proposed a fast and robust method capable of detect-
ing objects in an image. The method is based on the variance-
maximization learning of free parameters in a lifting dyadic wavelet



Table 2. Parameters learned for the training image illustrated in
Figure 1(a)

l λd
l λe

l

-7 0.080625 1.479114
-6 -0.836936 -1.974234
-5 1.407438 2.260381
-4 -1.193815 -1.712079
-3 -0.601544 0.229184
-2 2.752888 1.262573
-1 -3.132490 -2.721202
0 -0.637861 0.619456
1 7.083106 2.487422
2 -8.072976 -3.435716
3 3.840926 0.816744
4 0.946699 0.562087
5 -3.284445 -0.287910
6 2.515891 -0.785364
7 -0.954539 1.301003

filter. Our learning and detecting algorithms are very fast, because
only one set of free parameters is learned and only one lifting filter
with the learned parameters is applied to a query image for finding
objects similar to the target object.

We succeeded to detect narrow eyes from a variety of faces
independent of illumination change in simulation. However, some
other image regions have also been extracted by mistake. This
situation changes depending on the learned parameters.

In our approach, we only use the variance of a target object,
which is the second order statistics. We need to utilize higher order
statistics for achieving exact detection. This is a future work.
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Fig. 2. Detection results for the faces of standard, smile, anger and
scream

Fig. 3. Detection results for some illuminated faces


